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Background and Motivation
• Full-vectorial electromagnetic modeling of nanophotonic 

components on large simulation domains (> 1000 λ3) is 
computationally complex
• Solvers incorporating GPU accelerated hardware have mitigated 

computation time challenges in finite-difference EM modeling

• Leveraging this capability, inverse design edge couplers 
are optimized, fabricated, and characterized in a study to:

1. Reduce the footprint of typical photonic edge 
couplers for the silicon nitride on insulator material platform
2. Understand the performance tradeoffs of inverse design
3. Determine if inverse design is a viable design methodology 
for future projects and research in photonic heterogeneous 
integration [1]

J. L. Gonzalez, et al., Submicrometer PSAS-to-PSAS 
Self-Alignment Technology for Heterogeneous 
Integration" [2]



Edge Coupler Design Methodology
• In-plane lensed fiber-to-chip coupling adjoint 

method inverse design in SPINS-b [3]
• Finite-difference frequency-domain (FDFD) solver

• Randomly pixelated 12.0x4.0x0.04 µm design region 
(bottom right plot)

• 17x6x6 µm computational domain with 40 nm grid 
spacing and PML absorbing boundary condition 
(9.69M grid cells)

• 6.4 µm S-polarized spot size source placed at the 
component facet; source mode field determined by 
modeling a lensed fiber in the Lumerical finite-
difference time-domain solver (top right)
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Optimization Results
• Permittivity and FDFD field solution after 26 optimization iterations

• Elapsed computation time: 3 hours
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Broadband fiber-to-chip FDTD Validation
• To simulate the coupling loss, the lensed fiber-to-chip coupling experiment 

was modeled in Lumerical FDTD

• Pulsed source used to extract broadband performance

• 4 dB loss at 1.55 µm in the quasi-TE polarization
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Experimental Setup
• Prior to taking data, the input fiber stage is raised to couple light into the 

polarimeter for feedback to tune the desired polarization state using the 
two waveplates

• The couplers are actively aligned to maximize power at 1.55 µm, laser 
wavelength swept between 1.51 µm and 1.63 µm wavelength
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Determining Coupling Loss
• Using three measurements: baseline power (measurement excluding PIC), 

taper-to-taper layout, and taper-to-coupler layout, the transmission of the 
inverse design coupler can be determined as shown below

• Waveguide loss is negligible for the lengths used in the experiment
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Experimental Results
• Experiments were executed coupling to the quasi-TE and quasi-TM 

waveguide modes and compared to the FDTD model

• Experimental results show close resemblance to FDTD simulations with 
losses between 4.8 to 6 dB coupling loss in the quasi-TE polarization and 
2.2 to 3.5 dB coupling loss in the quasi-TM polarization throughout the 
optical C-band



Conclusion
• Design, validation, fabrication, and characterization of inverse design edge couplers was 

performed to create a compact coupling solution

• Discrepancy between simulation and experiment may be attributed to:

• Dielectric averaging and grid size in the FDTD model causing a misrepresentation of 
small features

• Lithographic patterning feature size limitation

• Lens shape in model vs. experiment

• Laboratory environment and model assumptions w.r.t. material parameters

• Assumptions in the coupling loss calculation

• Quasi-TM polarization showed lower coupling loss compared to quasi-TE in simulation 
and experiment, suitable for quasi-TM applications where die area is a constraint

• For low-loss applications, coupling can be improved by increasing the fractional area 
between the coupling mode and design region

• This may be facilitated by adding more layers vertically or coupling out of plane
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