

Bifurcation and Exceptional Point Boundaries of Coupled Opto-Electronic Oscillators

Student:	Brenden R. Glover	
Student E	mail:	brrglove@iu.edu
Faculty:	Prof. Gautam Vemuri	
Faculty Email: gv		gvemuri@iu.edu
AFRL Spor	nsor:	Joseph S. Suelzer
AFRL Dire	ctorat	e: Joseph.suelzer.1@us.af.mil

INDIANAPOLIS

Table of Contents

- 1. Introduction to Opto-Electronic Oscillators (OEO)
- 2. (Coupled) OEO Rate Equation Model/Predictions
- 3. Experimental Results
- 4. Conclusion

1. Intro to Opto-Electronic Oscillators (OEO)

- High-quality factor radio frequency (RF) signal generation
- RF Amplifier/Sensor (Linear and Non-linear regimes)
- Physical Random Number Generation
- Electronic ↔ Optical Conversion
- Well studied in experimental settings
- Understudied numerically and analytically
 - Generally hard to numerically model and analytically solve

Why Analytic Solutions?

- Our group's longstanding interest in solving time-delayed differential equations
 - Coupled LASER models (Dr. Andrew Wilkey and Dr. Joseph Suelzer)
- Physical intuition & understanding
- Well-defined (and fast) experimental predictions

→ **Engineering devices** (ex: RF sensing)

2. OEO Model

$$\frac{1}{\Delta}\frac{d^2V_{out}}{dt^2} + \frac{\Omega_0^2}{\Delta}V_{out} + \frac{dV_{out}}{dt} = \frac{dV_{in}}{dt}$$
(1)

2. OEO Model Mach-Zehnder Modulator (MZM) & Photo-Detector

Tapped Signal

....

Vout

-

(2)

 P_{in}

R

VBlas

 V_D

MZM optical input (P) is:

1.beam-split

- 2. phase-shifted
- 3. recombined

$$P_D = P co s^2 (\kappa_s V_{out}(t) + \kappa_B V_{Bias})$$

Photo-detector construction:

- Resistor
- photo-diode
- Reverse Bias Voltage source

$$V_D = DP_{in} = DP_D(t-T)$$

$$= \frac{GDP}{cos^2} [\kappa_s V_{out}(t-T) + \kappa_B V_{Bias}]$$

P - Laser Optical Power **P**_D - MZM Output Power **V**_{out} - Filter Output Voltage κ_s - Input Voltage Coupling **V**_{Bias} - MZM Bias Voltage κ_B - Bias Voltage Coupling

 P_{in} - Det. Input Power V_D - Det. Output Voltage V_a - Reverse Bias Voltage R - Resistance

2. OEO Model

$$x = \frac{V_{out}}{\kappa_s}, \phi = \frac{V_{Bias}}{\kappa_B}, \alpha = \kappa_s DGP$$

Model Equation Plugging (2) $V_{in} = GDP \cos^{2}[\kappa_{s}V_{out}(t-T) + \kappa_{B}V_{Bias}]$ Into (1) $\frac{1}{\Lambda}\frac{d^2V_{out}}{dt^2} + \frac{\Omega_0^2}{\Lambda}V_{out} + \frac{dV_{out}}{dt} = \frac{dV_{in}}{dt}$ $\frac{1}{\Delta}\frac{d^2x}{dt^2} + \frac{\Omega_0^2}{\Delta}x + \frac{dx}{dt} = \alpha \frac{d}{dt}\cos^2[x(t-T) + \phi]$

2. Coupled OEO Model

$$\frac{d^2 x_1}{dt^2} + \Omega_0^2 x_1 = \Delta \frac{d}{dt} \left(-x_1 + \alpha_1 \cos^2 [\xi_a x_1 (t - T_1) + \chi_a x_2 (t - T_1) + \Phi_a] \right)$$

$$\frac{d^2 x_2}{dt^2} + \Omega_0^2 x_2 = \Delta \frac{d}{dt} \left(-x_2 + \alpha_2 \cos^2 [\xi_b x_2 (t - T_2) + \chi_b x_1 (t - T_2) + \Phi_b] \right)$$

 x_1, x_2 - Normalized Voltages Ω_0 - Filter Central Frequency T_1, T_2 - Time Delay Δ - Bandwidth (Small) α_1, α_2 - Effective Gain ξ_a, ξ_b - Self Coupling χ_a, χ_b - Cross Coupling ϕ_a, ϕ_b - Normalized MZM Bias

2. Coupled OEO Model

$$\frac{d}{dt}\begin{bmatrix} A_1\\A_2\end{bmatrix} = -\frac{\Delta}{2} \left(\begin{bmatrix} \alpha_1 \xi_a \sin(2\phi_a) e^{-i\Omega_0 T_1 - \tau \lambda} \\ \alpha_2 \chi_a \sin(2\phi_b) e^{-i\Omega_0 T_2 - \tau \lambda} \end{bmatrix} \right)$$

$$\begin{array}{c} \alpha_1 \chi_b \sin(2\phi_a) e^{-i\Omega_0 T_1 - \tau \lambda} \\ \alpha_2 \xi_b \sin(2\phi_b) e^{-i\Omega_0 T_2 - \tau \lambda} \end{array} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} A_1 \\ A_2 \end{bmatrix}$$

 A_1, A_2 - Slowly Varying Amplitude Ω_0 - Filter Central Frequency T_1, T_2 - Fast Varying Carrier Time Delay τ - Slow Varying Envelope Time Delay Δ - Bandwidth (Small) α_1, α_2 - Effective Gain ξ_a, ξ_b - Self Coupling χ_a, χ_b - Cross Coupling ϕ_a, ϕ_b - Normalized MZM Bias

2. Coupled OEO Model

$$\frac{d}{dt}\begin{bmatrix}A_1\\A_2\end{bmatrix} = -\frac{\Delta}{2} \left(e^{i\theta_c} \begin{bmatrix} \alpha_1 e^{i\theta_d - \lambda\tau} & -\alpha_1 e^{i\theta_d - \lambda\tau} \\ \alpha_2 e^{-i\theta_d - \lambda\tau} & \alpha_2 e^{-i\theta_d - \lambda\tau} \end{bmatrix} + \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix} \right) \begin{bmatrix}A_1\\A_2\end{bmatrix}$$

 $\begin{array}{l} A_1, A_2 &- \text{ Slowly Varying Amplitude} \\ \Omega_0 &- \text{Filter Central Frequency} \\ \Omega_0 T_1, \Omega_0 T_2 \Rightarrow -\theta_C - \theta_d, -\theta_C \pm \theta_d \\ \tau &- \text{Slow Varying Time Delay} \\ \Delta &- \text{Bandwidth} \\ \alpha_1, \alpha_2 &- \text{Integrated Feedback Gain} \\ \xi_a, \xi_b \Rightarrow 1, 1 \\ \chi_a, \chi_b \Rightarrow 1, -1 \\ \phi_a, \phi_b \Rightarrow \frac{\pi}{4}, -\frac{\pi}{4} \end{array}$

2. Coupled OEO Model Coordinates of threshold boundary: For: $8\alpha_2\alpha_1 < (\alpha_1 + \alpha_2)^2$: $\alpha_2 = \frac{\alpha_1 - 1}{2\alpha_1 - 1}$ $\omega_{th} = 0$ For: $8\alpha_2\alpha_1 > (\alpha_1 + \alpha_2)^2$: $\alpha_2 = (Long Expression)$ $\omega_{th}^2 = \frac{\Delta^2}{4} (2\alpha_2\alpha_1 - 1)$

**This result is valid for any time delay τ and but only for θ_c , $\theta_d = 0$, (Balanced Case)

Exceptional Boundary: $8\alpha_2\alpha_1 = (\alpha_1 + \alpha_2)^2$

 $\alpha_1 \propto \text{Optical Power 1}$ $\alpha_2 \propto \text{Optical Power 2}$

Exceptional Boundary: $8\alpha_2\alpha_1 = (\alpha_1 + \alpha_2)^2$

3. Experimental Results

- 3.1 Balanced Experiment
- 3.2 Phase Matched ($\Delta f_0(\theta_c) = 0.93$ MHz) Experiment
- 3.3 Frequency State Probability vs. Frequency Detuning

 $\alpha_1 \propto \text{Optical Power 1}$ $\alpha_2 \propto \text{Optical Power 2}$

**Some Definitions

Phase Matched by $\theta_c = \pi/2$ (Imbalanced)

1.0

3. Exp. Results

Phase Matched $(\Delta f_0(\theta_c) = 0.93 \text{ MHz})$ Experiment

 $\alpha_1 \propto \text{Optical Power 1}$ $\alpha_2 \propto \text{Optical Power 2}$

3. Exp. Results

Phase Matched $(\Delta f_0(\theta_c) = 0.93 \text{ MHz})$ Experiment

 $\alpha_1 \propto \text{Optical Power 1}$ $\alpha_2 \propto \text{Optical Power 2}$

3. Exp. Results

Phase Matched $(\Delta f_0(\theta_c) = 0.93 \text{ MHz})$ Experiment

 $\alpha_1 \propto \text{Optical Power 1}$ $\alpha_2 \propto \text{Optical Power 2}$

0.9 0.9 0.8 0.8 0.7 0.7 State Probability State Probability 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -0.03 -0.01 -0.04 -0.02 0.01 0.02 -0.04 0 -0.03 -0.02 -0.01 0.01 0.02 0 Frequency (MHz) Frequency (MHz)

State Probability vs. Self-Resonant Frequency ($\Delta f_0(\theta_c)$)

3. Exp. Results

4. Conclusion

- We were able to construct a coupled OEO model with algebraic/analytic approximate solutions (predictions)
 - Utilized the slowly varying envelope approach
 - Transcendental condition for the first bifurcation
 - Exceptional line constant for $\theta_d = 0$
 - First bifurcation algebraic approximation (balanced: θ_d , $\theta_c = 0$)
 - Convergent in both limits!

• For
$$\theta_d = 0$$
, $\omega_{th}^2 = \frac{\Delta^2}{4} (2\alpha_2\alpha_1 - 1)$ [it's a hyperboloid!]

- Bifurcation boundary matches theory well for all time delays/phases
- Both threshold solutions are available for unbalanced
 - Hysteresis
- We found a states exhibit a probabilistic dependency on self-resonant frequency