

UNIVERSITY

Gamification to Advance Reinforcement Learning

Student:	Daniel Nagura				
Student Email: dn		946718@ohio.edu			
Faculty:	Jundong Liu				
Faculty Er	nail: liu	j1@ohio.edu			
AFRL Sponsor:		Trevor Bihl			
AFRL Directorate:		AFRL/RY			

Objective: Gamification to Advance Reinforcement Learning

- Proposed plan items
 - User provides feedback, and *reinforcement learning* from human feedback (RLHF) technique will be used to improve the motion planning algorithm.

• Gamification to improve user engagement.

- Updated additional item
 - Integrate human plays to improve RL policy learning.

Reinforcement Learning (RL)

• RL: train an agent to make decisions (policy) in an environment to maximize cumulative reward.

• State *S*_t

• Action A_t

• Reward R_t

• RL vs. supervised learning

Deep Reinforcement Learning (DRL)

- In practice, the states could be high-dimensional, e.g., images from camera.
- The basic idea of DRL is to use neural networks, as approximation functions, to model and learn the state and action interactions.
- Successful stories: AlaphGo (20160, AlaphDogFight (2019), ChatGPT (2022).

Race Car Environment (RCE) and our RL setup

- Car Racing environment (CRE) originally created by OpenAI Gym, which uses the Box2D physics engine.
- The racing car's objective is to complete a lap and score the highest number of points.
- Our RL setup:
 - State *s_t*: normalized gray-valued image of the current patch of size 96×96
 - Action *a_t*: sampled from the action space
 - Reward function r_t :
 - Rewarded for every track segment (a short distance) visited --- encourage following the track
 - Every time-step rewards -0.1 points and -0.2 points when at least one wheel is outside the road.

Project progress

From Niu 2021 et. al. "Accelerated sim-to-real DRL.

RL from AI Feedback (RLAIF) [Nagura et al., NAECON'24]

• The "AI" is designed as a convolutional neural network (CNN).

The AI: Conv Neural Network (CNN)

 Preferences can be set differently, *for example*, "staying in the middle of the road" or "running straightly within the boundary, therefore faster".

Preference of (a) stay in the middle of the road; (b) run straightly.

RLAIF [Nagura et al., NAECON'24]

• Scores from testing the RL models:

	5-Class CNN	Stay-in-road	Middle-of-road
RL-alone	216.15	176.41	98.15
RLAIF	394.50	248.56	194.15

Column: evaluation CNNs; Row: trained RL models.

Moving average scores for the rewards: The models are middle-of-road RLAIF (green), on-the-road RLAIF (blue) and RLalone (red), respectively.

RL with Human Experience (RLHE)

- A human plays with the environment and generate plays to be integrated into the experience replay buffer.
- The experience replay buffer is then used in PPO model to enhance the learning procedure of the agent.

logp denotes

logarithm

probability.

 $a_{\text{logp}}(s_t)$

RLHE: Results

• Car motion: RL-alone (left) vs. RLHE (right)

• Results

	No RLAIF	5-Class	Stay-in-road	Middle-of-
				road
RL-alone	515.21	508.81	527.31	440.61
RLHE	859.81	928.61	875.15	832.69

Training Procedure: RLHE (purple) vs RL-alone (red). X-axis: epoch; Y-axis: score.

Table: Column: evaluation CNNs, Row: trained models.