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Motivation
● Phased array radars (PARs) are increasingly popular and are excellent 

for surveillance because beamforming enables radar beam agility [1]
● Surveillance is the detection of previously undetected targets (search) 

and the maintenance of previously detected targets (tracking) [2]
● The state of practice is either the track-while-scan or the search-and-

track protocol [1]
● Both use a raster scan for the search task [1]

● Target activity in the environment may be non-homogeneous
● Neither state-of-practice protocol is able to use knowledge of target 

activity to improve surveillance performance
● Contribution: An activity based, data driven PAR surveillance algorithm 

that learns target activity patterns to improve surveillance beam 
placement2



Activity-Based Beam Placement Algorithm
 Goal: Learn target activity patterns to 

improve surveillance beam placement 
 Approach: A neural network (NN) based 

reinforcement learning (RL) agent
● Takes a state as input
● Predicts beam to illuminate using NN
● The NN is trained by taking actions 

and backpropagating received reward
 Novel Contribution: 

● Reward function that permits online 
learning in deployed radar

● An activity-based illumination 
perspective that only illuminates a 
sector when needed to follow changes

3

Figure 3.1. The proposed PAR surveillance beam placement algorithm. The goal of the algorithm is to 
improve the beam placement strategy of PARs engaged in surveillance by incorporating learned 
target activity patterns. Central to our solution is a NN-based RL agent for deciding the beam to 
illuminate given the state. To Train: The RL state is fed to the RL agent, time progresses by a 
timestep, the radar takes the specified action, and the reward that results is stored. Three different 
rewards are possible based on the action chosen, the radar’s current perception of the 
environment, and the true environment condition. The state, action, and reward are recorded in the 
current trajectory, and the RL state is updated based on the action taken. The previous state-
action-reward cycle is repeated for a set number of timesteps after which the trajectory is passed 
to the REINFORCE policy gradient algorithm to update the agent NN to favor actions with higher 
rewards given the associated states. The agent is trained for a set number of epochs. To Deploy: The 
RL state is fed to the RL agent to predict where the radar should look in the upcoming timestep. 
Time advances by one timestep and the radar takes the action chosen by the RL agent (illuminate a 
particular sector or do nothing). The RL state is updated to reflect the action taken and the process 
is repeated. 

Do Nothing Action

Radar Observes Difference in Beam

Radar Observes No Difference in Beam



Algorithm Details
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Radar Model

● Probability of observing true sector condition
● Only beam     illuminates sector
●     denotes the estimated sector condition
●     denotes the probability of detection 
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Surveillance Environment
● 1-D with maximum of one active target

● Target motion using constant velocity model
● Motion model is unknown to radar
●     denotes current position (m)
●     denotes current velocity (m/s)
●     denotes resolution between timesteps (s)
●     denotes the current timestep
●                    is white Gaussian acceleration noise

● Environment is discretized into N sectors
● Each sector   has a probability of appearance 
● Each sector   has a probability of disappearance
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RL State

●     denotes vector of     estimated sector conditions
●     denotes set of previous     environment conditions
●     denotes set of previous     actions
●     denotes delay since a detected event with respect 

to the upcoming timestep
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Reward

●     denotes time of last do-nothing action
●     denotes maximum allowed event detection delay
●     denotes a penalty for visiting a sector with no 

change

r (sk , ak)={k−q , if do−nothing
dmax−δ k , if sector different
μ , if sector not different

q
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Actions

● Actions    through        represent picking beams 
through 

● Action    represents the do-nothing action where no 
radar illumination occurs

ak∈{0 ,1 , ... , N−1 , N }

0 N−1 B0

BN−1

N



Results | Experiment 1
Per Sector 

Setup

Sector

0 1 2 3 4 5 6 7 8 9

P_ap 0.02 0 0 0.05 0 0 0.02 0 0 0.02

P_dp 1 0 0 0 0 0 0 0 0 1

Velocity (m/s) {240} N/A N/A {-240, 240} N/A N/A {-240, 240} N/A N/A {-240}

Width Approximately 50 timesteps

Δ=0.005
ωk∼N (0 ,152)

  dmax=500
h=2

Figure 5.1. 2-D histogram of detection delays for the experiment one evaluation MC trials. TOP LEFT: The appearance 
delay quantity in log10 that results when a raster scan is used in the environment outlined in experiment one. TOP 
RIGHT: The disappearance delay quantity in log10 that results when a raster scan is used in the environment 
outlined in experiment one. BOTTOM LEFT: The appearance delay quantity in log10 that results when the proposed 
approach is used in the environment outlined in experiment one. BOTTOM RIGHT: The disappearance delay quantity 
in log10 that results when the proposed approach is used in the environment outlined in experiment one. Note that 
the colorbar range is different between top figures and bottom figures.

Figure 5.2. Barcode plots showing a subset (first 500 timesteps) of a particular MC trial's action history for the 
raster and proposed approaches. The black dashed line provides a trace for each target in the environment as 
it moves. A green rectangle is used to denote the first time the target was detected in the sector and a red 
rectangle is used to denote the time when the target disappearance was detected in the sector. LEFT: Action 
history for a raster scan approach in the environment outlined in experiment one. The “DN” label on the y-axis 
refers to the do-nothing action which is unused in a raster scan. RIGHT: Action history for the proposed 
approach in the environment outlined in experiment one.

  
pD=1  
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 Performance of the proposed algorithm on an 
environment with non-homogeneous probability

 Setup
                  seconds
  
 Per sector details given in table

 Results:
 5,000 MC sims. each 5,000 timesteps
 NN weights from 5,000 training epoch

 Takeaways (w.r.t. raster)
 Proposed lowers average detection delay
 Proposed scan pattern follows target activity
 Proposed scan pattern provides more free time
 Like raster, proposed completely detects all 

targets with no missed activity



Results | Experiment 2
 Performance of the proposed algorithm on an 

environment with uniform appearance probability
 Setup

                  seconds
  
 Per sector details given in table

 Results:
 5,000 MC sims. each 5,000 timesteps
 NN weights from 5,000 training epoch

 Takeaways (w.r.t. raster)
 Proposed lowers average detection delay
 Proposed scan pattern follows target activity
 Proposed scan pattern provides more free time
 Like raster, proposed completely detects all 

targets with no missed activity

Δ=0.005
ωk∼N (0 ,152)

  dmax=500
h=2

Figure 6.1. 2-D histogram of detection delays for the experiment two evaluation MC trials. TOP LEFT: The appearance 
delay quantity in log10 that results when a raster scan is used in the environment outlined in experiment two. TOP 
RIGHT: The disappearance delay quantity in log10 that results when a raster scan is used in the environment 
outlined in experiment two. BOTTOM LEFT: The appearance delay quantity in log10 that results when the proposed 
approach is used in the environment outlined in experiment two. BOTTOM RIGHT: The disappearance delay quantity 
in log10 that results when the proposed approach is used in the environment outlined in experiment two. Note that 
the colorbar range is different between top figures and bottom figures.

Figure 6.2. A barcode plot showing a subset (first 500 timesteps) of the action history for the proposed 
approach in the environment outlined in experiment two. The black dashed line provides a trace for each 
target in the environment as it moves. A green rectangle is used to denote the first time the target was 
detected in the sector and a red rectangle is used to denote the time when the target disappearance was 
detected in the sector. “DN” is the do-nothing action.

  
pD=1  

Per Sector 
Setup

Sector

0 1 ... 8 9

P_ap 0.02 0.02 ... 0.02 0.02

P_dp 1 0 ... 0 1

Velocity (m/s) {240} {-240, 240} ... {-240, 240} {-240}

Width Approximately 50 timesteps
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Results | Experiment 3
Per Sector Setup

Sector

0 1 ... 34 35

P_ap 0.02 0 ... 0 0.02

P_dp 1 0 ... 0 1

Velocity (m/s) {240} N/A ... N/A {-240}

Width Approximately 15 timestepspD

Δ=0.025
ωk∼N (0 ,152)

  dmax=1000

h=5  

Figure 7.1. Experiment three results. TOP: The completion percentages for each pairing considered. 
For reference, no target was detected at 100% completion percentage in the raster scan cases, 
and the proposed approach detected 40,703, 34,609, and 37,658 complete targets (i.e., completion 
percentage of 100%) on the P_D = 1, P_D = 0.9, and P_D = 0.8 scenarios, respectively. In experiment 
three, a total of 40,710 targets were generated across all the trials in each pairing considered. 
BOTTOM: The number of unused timesteps for each pairing considered. In both plots, the bold 
horizontal line within the box is the mean value, the lower edge of the box is the value one 
standard deviation lower than the mean, the upper edge of the box is the value one standard 
deviation higher than the mean, the lower whisker is the minimum value, and the upper whisker 
is the maximum value.

 Vary      and evaluate effect on completion % 
and number of unused timesteps

 Setup
                 seconds
  
 Per sector details given in table

 Results:
 5,000 MC sims. each 5,000 timesteps
 NN weights from 5,000 training epoch
 Comp. %: Targets with no missed activity
 Unusued: # of timesteps radar not used

 Takeaways (w.r.t. raster)
 Proposed increases completion %
 Proposed increases number of unused
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Related Works
● Works [3] – [8] are the closest related works as they explicitly consider non-

homogeneous target environments
● Per-sector target arrival and motion modeled as a Poisson point process
● Requires a priori dynamics knowledge

● Work in [9] uses genetic algorithm to build target likelihood map of untracked 
targets to improve search

● Focuses solely on search
● Bayesian filtering-based sensor management is common

● Examples: [10] – [12]
● Requires knowledge of probability density functions
● Solutions often resort to approximate algorithms due to complexity

● Limited number of machine learning-based beam placement works
● Examples: [13] – [15]
● Few machine learning works exclusively focus on beam placement
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Conclusion
 Demonstrated that PAR surveillance in non-homogeneous 

environments can be improved by incorporating environment 
knowledge

 The algorithm is online-capable as the reward function does not 
require access to quantities that are not available to a deployed radar

 Algorithm incorporates an activity-based, data-driven approach
 Future work may include:

● Making the scenario more realistic by allowing for more than one 
target in the environment

● Adjusting the reward function used to explore operator-set 
surveillance adjustments for other task(s) of interest

● Extending the algorithm to allow for the dynamics to change over 
time9
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