

Characterization of Gamma Irradiated Aerosol Jet Printed Polyimide/h-BN Films

Student:	Lucas Clark				
Student Email:		cla	lark.567@wright.edu		
Faculty:	Ahsan Mian				
Faculty Email: ah		ah	san.mian@wright.edu		
AFRL Sponsor:			Carrie Bartsch		
AFRL Directorate:		:e:	AFRL/RY		

Motivation

Conventional Radiation Protection Schemes:

- **Redundant Systems and Components**
- Error Tolerant Coding ٠
- **External Shielding** ٠
 - Adds complexity, cost, and weight **

Spot Shielding:

- Selectively shielding susceptible electronic components
 - Aerosol Jet Printing and Other Additive Manufacturing Processes *
- Advanced nanocomposite materials utilizing low density host with high density guest nanoparticles
 - ** Higher density materials (i.e. lead) have higher gamma attenuation
 - Lower density materials could reduce overall shield weight **

Aerosol Jet Printing

Direct Ink Write Technology

- Create Microscale 2D or 3D Functional Structures on Flat or Conformal Surfaces
- Features With Dimensions As Small As 5 μm And Up To Several mm

Materials Include

- Colloidal Inks
- Nanoparticle-filled Inks
- Diluted Thick-film Pastes
- Thermosetting and UV Curable Polymer Solutions

Ultrasonic Atomization: Ink viscosities up to 7 cP **Pneumatic Atomization:** Ink viscosities up To 1000 cP

Top Image: "Ceradrop Is Exclusive Distributor of OPTOMEC in France." CERADROP Is Exclusive Distributor of OPTOMEC in France, www.ceradrop.com/en/distributeur-integrateur-optomec/. Accessed 6 Oct. 2024. Bottom Image: Agarwala, S, et al. "Optimizing aerosol jet printing process of silver ink for printed electronics." IOP Conference Series: Materials Science and Engineering, vol. 191, Apr. 2017, p. 012027, https://doi.org/10.1088/1757-899x/191/1/012027.

Overview

- Developed aerosol jet printable nanocomposite inks containing Polyimide (PI) and hexagonal boron nitride (h-BN)
 - Ink Concentrations:
 - Pl
 - PI-25 wt% h-BN
 - PI-50 wt% h-BN
- PI-75 wt% h-BN

h-BN

- Characterized printed nanocomposite thin films using Fourier-transform infrared spectroscopy (FTIR)
- Exposed thin films to Cobalt-60 source for a total dosage of 80 krad (Si) and recharacterized using FTIR

Materials used for the nanocomposites' formulations:

- Commercial off the shelf (COTS) Polyimide solution (P84 Type 70 in LTM1) from Evonik Industries
- ➢ Organic solvents used: Cyrene (99%) Sigma-Aldrich, Cyclohexanone (≥99.0%) Sigma-Aldrich, and α-Terpineol Sigma-Aldrich
- Boron Nitride Powder (98%), 1 μm average particle size Sigma-Aldrich
- Ethyl Cellulose (5% in toluene/ethanol) Sigma-Aldrich
- Substrate Undoped double sided polished silicon wafers

Ink Formulations and Printed Samples

- Polyimide Ink:
 - P84 was diluted with Cyrene
- h-BN/Polyimide Inks:
 - Sonication of h-BN flakes in Cyrene
 - Polyimide combined with h-BN/Cyrene Solution
- h-BN Ink:
 - h-BN and ethyl cellulose were sonicated in isopropyl alcohol
 - Solvent exchanged using salt water and supernatant
 - h-BN pellet was washed with deionized water
 - Deionized water was replaced with isopropyl alcohol
 - Solution was placed in an evaporation dish to dry into flakes
 - h-BN flakes were added to cyclohexanone and αterpineol solution

<u>Sample Type</u>	Sample ID	<u>Thickness (μm)</u>
PI	1	5.7
PI	2	5.2
PI	3	1.5
PI-25 wt% h-BN	4	1.4
PI-25 wt% h-BN	5	1.5
PI-25 wt% h-BN	6	2.4
PI-50 wt% h-BN	7	2.2
PI-50 wt% h-BN	8	1.0
PI-50 wt% h-BN	9	1.4
PI-75 wt% h-BN	10	2.0
PI-75 wt% h-BN	11	1.8
PI-75 wt% h-BN	12	2.1
h-BN	13	1.9
h-BN	14	6.2
h-BN	15	1.9

FTIR: Polyimide – Before Exposure

- Polyimide Common Peaks:
 - ➤ ≈1775 cm⁻¹: Asymmetric Stretching of C=O Bonds
 - ➤ ≈ 1720 cm⁻¹: Symmetric Stretching of C=O Bonds
 - ➤ ≈ 1370 cm⁻¹: C-N Bond Stretching
 - ➤ ≈ 720 cm⁻¹: Bending of C=O

References:

[1] Mushtaq, Nafeesa, et al. "Organosoluble and high Tgpolyimides from asymmetric diamines containing N-amino and N-aminophenyl naphthalimide moieties." RSC Advances, vol. 6, no. 30, 1 Mar. 2016, pp. 25302–25310, <u>https://doi.org/10.1039/c6ra00143b</u>.

[2] Xiao, Meng, et al. "The effect of doping graphene oxide on the structure and property of polyimide-based graphite fibre." RSC Advances, vol. 7, no. 89, 12 Nov. 2017, pp. 56602–56610, https://doi.org/10.1039/c7ra10307g.

[3] Jeong, Keuk-Min, et al. "Effects of crosslinking agents on the physical properties of polyimide/amino-functionalized graphene oxide hybrid films." Polymer International, vol. 67, no. 5, 24 Mar. 2018, pp. 588–597, <u>https://doi.org/10.1002/pi.5555</u>.

[4] Zi, Yucheng, et al. "High-temperature-induced shape memory copolyimide." Polymers, vol. 13, no. 19, 23 Sept. 2021, p. 3222, https://doi.org/10.3390/polym13193222.

[5] Hou, Shuna, et al. "Fabrication, mechanical and dielectric characterization of 3D orthogonal woven basalt reinforced thermoplastic polyimide composites." Journal of Textile Science and Technology, vol. 01, no. 01, 15 Apr. 2015, pp. 35–44, https://doi.org/10.4236/jtst.2015.11005.

[6] Xu, Xilin, et al. "Aqueous solution blending route for preparing low dielectric constant films of polyimide hybridized with polytetrafluoroethylene." Journal of Materials Science: Materials in Electronics, vol. 28, no. 17, 12 May 2017, pp. 12683–12689, https://doi.org/10.1007/s10854-017-7093-1.

FTIR: h-BN – Before Exposure

- h-BN Common Peaks:
 - ➤ ≈1380 cm⁻¹: In-plane stretching vibration of B-N bonds
 - Broad Band ranging from 1300-1500 cm⁻¹
 - ➤ ≈ 810 cm⁻¹: Out-of-plane bending vibration of B-N-B bonds

References:

[1] Yu, Yizhen, et al. "Facile ion-exchange synthesis of silver films as flexible current collectors for micro-supercapacitors." Journal of Materials Chemistry A, vol. 3, no. 42, Sept. 2015, pp. 21009–21015, https://doi.org/10.1039/c5ta04913j.

[2] Shen, Tiantian, et al. "Highly efficient preparation of hexagonal boron nitride by direct microwave heating for Dye Removal." Journal of Materials Science, vol. 54, no. 12, 12 Mar. 2019, pp. 8852–8859, https://doi.org/10.1007/s10853-019-03514-8.

[3] Tang, Chengchun, et al. "Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles." Advanced Functional Materials, vol. 18, no. 22, 17 Nov. 2008, pp. 3653–3661, <u>https://doi.org/10.1002/adfm.200800493</u>.

[4] Zhai, Le, et al. "Cyanate ester resin based composites with high toughness and thermal conductivity." RSC Advances, vol. 9, no. 10, 9 Feb. 2019, pp. 5722–5730, <u>https://doi.org/10.1039/c8ra10244a</u>.

[5] Sankaran, Kamatchi Jothiramalingam, et al. "Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures." Scientific Reports, vol. 6, no. 1, 11 July 2016, https://doi.org/10.1038/srep29444.
[6] Hidalgo, A., et al. "High-yield synthesis of cubic and hexagonal boron nitride nanoparticles by laser chemical vapor decomposition of Borazine." Dataset Papers in Nanotechnology, vol. 2013, 29 Aug. 2013, pp. 1–5, https://doi.org/10.7167/2013/281672.

FTIR: Nanocomposites – Before Exposure

FTIR: Nanocomposites - After Exposure

Exposure: University of Massachusetts Lowell - Gamma Cave Facility - Cobalt-60 Source -Total Dosage: 80 krad (Si)

Conclusion

- Formulation of PI/h-BN Nanocomposite Inks For Aerosol Jet Printing
 Ink Concentrations:
 - Pl
 - PI-25 wt% h-BN
 - PI-50 wt% h-BN
- PI-75 wt% h-BN
- h-BN
- Printed nanocomposite thin films were exposed to a Co-60 source up to 80 krad (Si)
- Analysis of FTIR data before and after Co-60 exposures show the materials under this study were stable up to the applied dosage as there was no change in peak locations or intensities
- **Future Work**: Measure attenuation coefficients of the nanocomposites and determine effectiveness as specifically designed radiation spot-shielding materials