

Solid State Power Generation for High Speed Vehicles

Student:	Spencer Schaiper			
Student Email: sc		haipers1@udayton.edu		
Faculty:	Dr. Rydge Mulford			
Faculty Email: rm		nulford1@udayton.edu		
AFRL Sponsor:		Mr. Zachary Adamson		
AFRL Directorate:		e: AFRL RQQ		

PA #: AFRL-2024-6105

Overview

- Introduction
- ThermoElectric Generator (TEG) Operation
- 1D Aerothermal Modeling
- Low Temperature Testing
- High Temperature Testing
- Future Work

Aircraft Power Generation

- Traditional Aircraft
 - Could extract energy from waste heat streams 2009 Boeing analysis showed 0.5% improvement in fuel consumption
 - Can't compete with rotating, mechanical generators Generator: 1–2 kW/kg TEG: 0.1–0.5 kW/kg
- Hypersonic Aircraft
 - RAMJET/SCRAMJET lack rotating core No rotating shaft for traditional generator
 - Aerothermal heating must be managed Large Delta T to preserve internal systems All this heat was carried as chemical energy in the fuel!

TEG Theory

- Heat Conduction Drives Power Generation
 - $Q_{Cond} = K(T_{Hot} T_{cold})$ Power scales with $|Q_{Cond}|$
 - $V_{Tot} = N\alpha(T_{Hot} T_{Cold})$ Voltage scales with Seebeck coef. & # of couples
- Power Generation Creates Resistive Losses
 - $I_{Tot} = N\alpha(T_{Hot} T_{Cold})/(R_{TEG} + R_{Load})$ Current constrained by load and internal resistance
 - $Q_{TEG} = I_{Tot}^2 R_{TEG}$ Internal couple resistance is ohmic loss
- Delta T is Proportional to Heat Flow
 - Ability to manage heat flow determines delta T
 - This is a coupled problem!
 - Temperature-varying properties:
 - $K(T), \ \alpha(T), \ R(T)$
 - Time-varying heat fluxes:
 - $Q_{In}(T), Q_{Out}(T), Q_{Cond}(T), Q_{TEG}(T)$
 - Need to impedance match the TEG and the load

TEG Modeling

- Integrated TEG Model
 - Full detail TEG modeled with stack layers
 - Used to visualize steady state heat flow and power generation in early stages
- Pseudo TEG Model
 - TEG treated as generic box
 - Identified sufficient thermal isolation
 - Evaluated the requirement for cooling between tests *Will backfill chamber between tests*
- TEG-only Model
 - Deeper look into TEG performance
 - Steady state model with resistance load
 - Highlighted importance of impedance matching

[s]

600

500.

400

100.

200.

300

[s]

Impedance Matching

- Impedance is not naturally stable
 - Requirement of the load controller
 - Impedance is matched when:

 $\Omega_{TEG} = \Omega_{Load}$

• Determining TEG efficiency:

$$I = J * A_{e,min}$$

$$P_e = V * I$$

$$P_Q = Q'' * A_{T \not E} G_{J * A_{e,min}}$$

$$\eta_{TEG} = \frac{P_e}{P_Q} = \frac{Q'' * A_{TEG}}{Q'' * A_{TEG}}$$

- Where:
 - *J* = *Current density*
 - P_O = Heating power
 - P_e^{\sim} = Electrical power

Der [M]

1

1D Modeling Overview

- X-15 'Speed Mission' Profile Selected
 - 7.33 G Pullout
 - Speed brakes closed
 - M > 4 at 240 sec
 - Extrapolated to 400 sec
- Two locations selected on X-15
 - Location 1: Higher Temperature
 - 25 cm from nose, $\theta = 15^{\circ}$
 - Location 2: Lower Temperature
 - 300 cm from nose, $\theta = 1^{\circ}$

Aerothermal Heating

1. Choose Mach number and altitude 2. Get air density, viscosity, and Prandtl number at farfield conditions Using tables, $Pr \approx const$. Using $r = Pr^{1/3}$, calculate T_{aw} (or T_r) 1. $T_{aw} = T_e \left(1 + r \frac{\gamma - 1}{2} M^2 \right)$ 1. Calculate the reference temperature T^* T_w is wall T_{aw} is adiabatic wall T_e is far field $T^* = 0.5T_w + 0.16T_{qw} + 0.34T_e$ Using reference, get μ^* 1. $\frac{\mu}{\mu_0} = \left(\frac{T}{T_0}\right)^{3/2} \frac{T_0 + S}{T + S_\mu}$ 2. Calculate Reynolds number $Re_x = \frac{\rho_e u_e x_e}{\mu_e}$

1. Use scale factor to get the incompressible *Re*

$$F_{Re_{\chi}} = \frac{\mu_e T_e}{\mu^* T^*}, Re_{\chi,i} = F_{Re_{\chi}} Re_{\chi}$$

8. Use an incompressible correlation for friction coefficient

 $c_{f,i} = 0.592 R e_{x,i}^{-0.2}$ for a turbulent boundary layer

8. Use different scale factor to recover the compressible friction coefficient

 $F_c = \frac{T^*}{T_e}, c_{f,i} = F_c c_f$

8. Use shape factor to scale flat plate results to a cone

 $c_f = \sqrt{3}$ for laminar

 $c_f = 1.176$ for turbulent

8. Calculate compressible Stanton number

$$\frac{2C_H}{c_f} = R_f, R_f = Pr^{-2/2}$$

- 8. Get heat transfer coefficient from Stanton number (C_H and St) $St = \frac{h}{c_p \rho V} = \frac{Nu}{RePr}$
- 8. Finally, heat flux to surface is given by $q'' = h(T_{aw} T_w)$

Flight Profile Modification

- Flight profile was scaled for higher T_{aw}
 - Mach number
 - Altitude
- ISA model used as starting point for each appended point
- Gas relations used beyond
- Agreement between atmospheric data

Scalars				
Mach Number	1.55			
Altitude	1.00			
Maximums Throughout Flight Profile				
Altitude	38,453 m (454,243 ft)			
Mach Number	9.9564			
Stagnation Temperature	4921 K			
Adiabatic Wall Temperature	1491 K			

Transient Conduction Model

Properties calculated

•
$$R = N_{junction} \left(\frac{\phi_p t_p}{A_p} + \frac{\phi_n t_n}{A_n} \right)$$

• $K = N_{junction} \left(\frac{k_p A_p}{t_p} + \frac{k_n A_n}{t_n} \right)$

- Power predicted with voltage and current calculations
 - $V_{TEG} = N_{junction} \alpha (T_H T_L)$ • $I_{TEG} = \frac{V_{TEG}}{R_{TEG} + R_{load}} = \frac{V_{TEG}}{2R_{TEG}}$ • $I_{TEG} = \frac{V_{TEG}}{R_{TEG} + R_{load}} = \frac{V_{TEG}}{2R_{TEG}}$
- Hot and cold side heat transfer is given by the ideal equations
 - $Q_H = -\frac{1}{2}R_{teg}I_{teg}^2 + nIT_H\alpha + K_{teg}(T_H T_L)$
 - $Q_L = \frac{1}{2} R_{teg} I_{teg}^2 + n I T_L \alpha + K_{teg} (T_H T_L)$

CFD Flow Visualization and Validation

- Aerothermal heating data used in conduction model assumes a certain vehicle skin thickness/material properties, but these change in the conduction model
- A fully parallel CFD model will solve the aerothermal heating and conduction problem simultaneously, removing the mismatch between aerothermal and conduction models

Distribution Statement A. Approved for public release: distribution is unlimited. PA AFRL-2024-6105.

Overview

- 4 BiTe TEG array
- Vacuum testing environment
- Heat flux via 4 AlN heaters
- Temperatures up to 600 C
- Active and passive cooling

	BiTe TEG (Cold)
Number of Legs	12
Leg Width	2.5 mm x 5 mm
Cross Sectional Area	60 mm x 20 mm = 1200 mm ²
TEG Thickness	6 mm
PCM Thickness	10 cm
Distance from Leading Edge*	25 cm
Max Temperature	600 C

With Multi-Layer

Insulation (MLI)

Instrumentation & Key Features

- Data recorded with multi-channel data logger
 - 11 K-Type Thermocouples For various temperature/heat flux measurements
 - 1 Pressure Transducer To monitor chamber pressure
 - 1 Voltage, 1 Current To measure electrical power
 - 1 Force Transducer To set and monitor mechanical load
- 4 AIN Heaters
 - High power-density heaters interface with faux skin Large, controllable heat flux input to system
 - Minimal parasitic thermal capacitance AIN – Low specific heat and density
 - Significant control authority

Structural Analysis

- Load Frame Structure
 - Test stack loaded in compression Compressive forces decrease thermal contact resistance
 - Outer frame loaded in tension Designed to be mores stiff than internal structure
 - Self-locking bolt to set initial pressure Force transducer for constant mechanical load measurement
- Load frame FEA
 - Determined reaction & deflection to loading Outer structure much stiffer than inner structure
 - Verified peak stresses with FOS Ceramic standoffs and steel plate survive
- Self-Locking Bolt
 - Thread will apply and hold mechanical force Governed by lead angle and coefficient of friction

Structural Analysis

- Thermal Isolation and Insulation
 - Ceramic standoffs to transfer pressure Minimal thermal conductivity and contact area
 - MLI reduces radiation losses Radiation is significant due to low conductive losses
- Thermal Expansion
 - Need compliance to allow for thermal expansion Constrained thermal expansion will destroy the TEGs
 - Incorporated Belleville springs for compliance Accounts for pre-load and thermal expansion
 - Can vary spring arrangement to change force Series-Parallel combination
- Accounts for Expansion
 - Belleville springs absorb thermal expansion Prevents structure from 'bottoming out' with FOS
 - Design allows for wide range of pressures and temperatures Variable spring combinations

Maximum Power Point Tracking

- Buck-Boost DC-DC converter provides Maximum Power Point Tracking (MPPT)
 - Live, self-adjusting impedance matching Allows for maximum electrical power extraction
 - Designed for up to 40V, 30A More than covers this test and future testing
- Designed for maximum power conversion in minimal space & weight
 - GaN switches enable 500kHz 1MHz switching Decreases size/weight of passive components
 - TEG Von = 0.3V Low Von captures as much energy as possible
- Designed with future efforts in mind
 - Onboard power storage
 - Built-in measurements
 - Built-in monitoring and protection

Heating Profile

Simulated response based on X-15 mission profile and TEG properties.

 $T_{max,equilibrium} = 522.9619 C$ $T_{max,adiabatic} = 1218.1672 C$

