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Objectives

Goal: Expand research on multi-scale numerical modeling strategies to transient heat transfer 
problems with highly localized loading conditions through establishing implementation 
strategies and characterizing the temporal convergence behavior of GFEM

1. Assess the temporal convergence and accuracy of GFEM applied to a model problem in 
multiple dimensions 

4.          Shed light on nuances and implementation strategies of the GFEM

3.          Investigate computational savings compared to standard methods

2.  Assess temporal stability of the GFEM in heat transfer analysis 



Challenges with Hypersonic Analysis
• Modern day engineering problems in 

hypersonic vehicle design are dominated by 
heat transfer

• Fine-scale and transient loading conditions
• Coupled, multi-physic interactions

• Current multi-scale modeling strategies lack 
power to resolve all spatial-temporal scales 
on a global level

• Fine meshes needed for spatial gradients
• Broad regions of refinement for transient 

features
• Small time steps to maintain temporal stability 

• High-fidelity solutions often require large 
amounts of CPU power, time and memory

• Above is the flow and temperature field over a 
torque tube experiencing sharp thermal 
gradients on a small scale due to shock-boundary 
layer interactions

• Accurately resolving local features across all 
spatial-temporal scales, while avoiding local 
mesh refinement and advanced multi-scale 
methods, is essential for practical modeling of 
multi-physic simulations

Question: How can we simultaneously capture 
fine-scale features and global phenomena 

within a multi-physics simulation?

[Witeof and Neegard et al 2014]

Image courtesy if Jon Willem, The Ohio State University



Motivation
• Heat transfer in extreme environments is multi-scale 

and coupled with fluids and structural analysis
• Mathematically, heat transfer is a scalar equation

Implementation differs from vectoral analysis of 
fluids and tensorial analysis of structures

• Enabling solutions of heat transfer problems in 
extreme conditions is essential for high-speed vehicle 
design

• The GFEM incorporates solution-tailored shape 
functions to alleviate the need for local mesh 
refinement

• Current work has focused on ability for GFEM to 
capture localized features efficiently and stabilization 
of fluids and structural problems in multi-scale 
environments

• Lack of research to extend these concepts to heat 
transfer analysis leads to a gap in knowledge 

Computational 
efficiency

Handling localized 
features

Stability

Knowledge 
Gap

• Fluid dynamics: Incompressibility and 
stabilizing advection dominated 
problems [Shilt et al. 2020, 2021] 

• Structural Dynamics: Reduction of 
critical time step [Sanchez-
Rivadeneira, Duarte 2021]

• Handling sharp thermal 
gradients [O'Hara, Eason, 
Duarte 2011]

• 3D fatigue crack 
propagation [Pereira et al. 
2009]

• Retain expected convergence 
criterion [O'Hara, Eason, 
Duarte 2011, 2009]

• Accurate solutions on coarser 
meshes and larger time steps 
[O’Hara, Eason, Duarte 2009]

Hypothesis: GFEM can enable high-fidelity 
solutions of extreme multi-scale heat transfer 
problems that are currently prohibitive in the 

context of multi-physics simulations



Overview of the GFEM

FEM Approximation Space

Enrichment Space

*
GFEM Enrichment Space

𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)
j=1
m𝛼𝛼  

𝜑𝜑𝛼𝛼(𝑥𝑥) 𝛼𝛼=1
𝑁𝑁

𝜙𝜙𝛼𝛼𝛼𝛼 = 𝜑𝜑𝛼𝛼(𝑥𝑥)𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)
j=1
m𝛼𝛼  

Includes discontinuity into 
shape function 

Final approximation: 𝑢𝑢ℎ 𝑥𝑥 = ∑𝛼𝛼∈𝐼𝐼ℎ �𝑢𝑢𝛼𝛼𝜑𝜑𝛼𝛼 𝑥𝑥 + ∑𝛼𝛼∈𝐼𝐼ℎ 𝜑𝜑𝛼𝛼(𝑥𝑥)∑𝑗𝑗=1
𝑚𝑚𝛼𝛼  �𝑢𝑢𝛼𝛼𝛼𝛼𝐿𝐿𝛼𝛼𝛼𝛼(𝑥𝑥)

Modifies FEM framework to introduce solution tailored “enrichments” into standard FEM space

• Can be any function; 
typically derived from a 
priori knowledge

• GFEM shape functions formed through a product of 
standard FEM shape functions and enriched trial space

GFEM elegantly handles fine-scale features by directly introducing these features into the 
computational domain, alleviating local mesh refinement

Global-Local GFEM 
(GFEMgl)

Enrichments extracted from 
local problem solution



Challenges with GFEM
GFEM shape functions inherently linearly dependent

• Singular matrices, even after boundary condition application Leads to difficulties in 
solving the system and potential errors

• Ill-conditions matrices due to close to singular matrices  Leads to errors in the solution

Implementation rarely straightforward
• Difficult to apply boundary conditions due to enrichments  Enrichments not necessarily 

zero at the nodes
• a priori information not always available Difficult to derive proper enrichment functions

Need: Development of GFEM to confidently expand its use cases and identify technical 
challenges that must be overcome 



Beam Subjected to a Sharp Heat Flux
Property Definitions

𝝆𝝆𝝆𝝆 18.3
𝑓𝑓𝑓𝑓 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖𝑛𝑛3 ∗ ℉

𝒌𝒌 2.92
𝑓𝑓𝑓𝑓 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖𝑖𝑖 ∗ ℉ ∗ 𝑠𝑠

𝒚𝒚𝟎𝟎 0.25𝑖𝑖𝑖𝑖
𝒙𝒙𝟎𝟎 8.8𝑖𝑖𝑖𝑖

𝑰𝑰𝟎𝟎 295.03
𝑓𝑓𝑓𝑓 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙

𝑠𝑠
a 0.025𝑖𝑖𝑖𝑖

𝜸𝜸 10
1
𝑠𝑠

h 11
𝑓𝑓𝑓𝑓 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙

𝑖𝑖𝑛𝑛2 ∗ ℉ ∗ 𝑠𝑠
𝒖𝒖∞ 70℉

𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑥𝑥0 + 𝑉𝑉𝑉𝑉

𝜌𝜌𝑐𝑐 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝒙𝒙, 𝑡𝑡 = 𝑘𝑘∇2𝑢𝑢 𝒙𝒙, 𝑡𝑡  𝑖𝑖𝑖𝑖 Ω 

Ω = {0 < 𝑥𝑥 < 12𝑖𝑖𝑖𝑖, 0 < 𝑦𝑦 < 0.5𝑖𝑖𝑖𝑖, 0 < 𝑧𝑧 < 0.24𝑖𝑖𝑖𝑖}

−𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
 

ℎ 𝑢𝑢 𝑥𝑥, 𝑡𝑡 − 𝑢𝑢∞  𝑜𝑜𝑜𝑜 Γ𝑐𝑐 = 𝜕𝜕Ω \Γc

Γ𝑛𝑛 = {8𝑖𝑖𝑖𝑖 < 𝑥𝑥 < 10𝑖𝑖𝑖𝑖, 0 < 𝑦𝑦 < 0.5𝑖𝑖𝑖𝑖, 𝑧𝑧 = 0.24𝑖𝑖𝑖𝑖} 

−𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐼𝐼0
2𝜋𝜋𝑎𝑎2

𝑒𝑒−
𝑥𝑥−𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 +𝛽𝛽 𝑦𝑦−𝑦𝑦0

2

2𝑎𝑎2 1 − 𝑒𝑒−𝛾𝛾𝛾𝛾  𝑜𝑜𝑜𝑜 Γ𝑛𝑛 



Time Evolution of Internal Energy for Different γ

• Energy evolution prediction depends on ability the time-integrator and 
spatial approximation space to capture the sharp temporal gradient

• Low order approximations exhibit oscillations in Crank-Nicolson (CN) 
solutions when γ is large

• Time-dependent shape functions accurately predict the internal energy 
over all cases

• GFEMgl  enables accurate prediction of sharp temporal gradients for 
multiple time-integrators

Enrichments:
 𝐿𝐿𝛼𝛼𝛼𝛼 =

𝑥𝑥−𝑥𝑥𝛼𝛼
ℎ

𝑙𝑙 𝑦𝑦−𝑦𝑦𝛼𝛼
ℎ

𝑚𝑚 𝑧𝑧−𝑧𝑧𝛼𝛼
ℎ

𝑘𝑘

𝑙𝑙,𝑚𝑚,𝑘𝑘=0

𝑝𝑝
 

 𝑘𝑘 ≤ 𝑚𝑚 + 𝑙𝑙

𝜸𝜸 = 𝟓𝟓𝟓𝟓
𝟏𝟏
𝒔𝒔 𝜸𝜸 = ∞

𝟏𝟏
𝒔𝒔

hp-
GFEM GFEMgl 

Degrees of 
Freedom 913,320

420/
104,090

(Global/Local)

Enrichment 
Order 𝑝𝑝 = 3 𝑝𝑝 = 2+local/

𝑝𝑝 = 2 

Number of 
Time-steps 1024 1024



Temporal Convergence of GFEM with Different Time 
Integrators and γ

• Shown left are accurate multi-scale solutions with 
larger time steps

• GFEM using solution-tailored, exponential 
enrichments obtains temporal convergence 

• GFEMgl  curves match hp-GFEM until error saturates 
for Backward Euler (BE)

• GFEMgl  achieves optimal convergence where hp-
GFEM doesn’t for CN

• Evident for 𝛾𝛾 = ∞ as hp-GFEM convergence rate has 
reduced to 1 

• GFEM enables temporally convergent multi-scale 
solutions for multiple time integrators and 
configurations

CN

BE



Conclusions and Future Work
• Temporal convergence obtained with time-dependent, solution tailored 

enrichments on coarse grids
• Convergence study demonstrates GFEM can achieve accurate solutions on coarse 

meshes and larger time steps
• Solution-tailored, time-dependent enrichments damped numerical oscillations 

and recovered theoretical convergence rates 
• Results provide improved confidence in the ability of GFEM to enable simulations 

of design critical multi-scale, multi-physics problems of hypersonic systems
• Initial stability study (not shown) and convergence results indicate potential for 

GFEM to increase critical time steps with solution-tailored enrichments 

• Future Work
• Study on the Forward Euler method
• Conduct an in-depth stability analysis to determine how the choice of approximation effects 

critical time steps  
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