

RQ23-23 High Work High Efficiency Low Pressure Turbine Aerodynamics

Student:	Vincent Sheeler			
Student Email:		sheeler.5@wright.edu		
Faculty:	Dr. Mitch Wolff			
Faculty Email:		mitch.wolff@wright.edu		
AFRL Sponsor:		Dr. Christopher Marks		
AFRL Directorate:		: AFRL/RQTT		

PA #: AFRL-2024-5599

Introduction - Laminar Boundary Layer Separation

- Laminar Boundary Layer Separation characterized by an unstable separated shear layer and reversing flow, often occurs at low Reynolds number conditions
- Separation control well studied want to optimize layout and operation of flow control systems
- Requires knowledge of ideal locations and frequencies for operation
- Eppler 387 experiences laminar separation at Re = 100000, $\alpha = 0^{\circ}$

Determining Candidate Frequencies - Resolvent Analysis

- Resolvent Analysis performed by Prof. Andreas Gross (NMSU)
 - Built on similar equations as bi-global linear stability theory
 - Provides analysis of forcing modes and response modes of the flow
 - Examined 0% and 1% turbulence intensity
- First Mode peaks at $\omega_r = 53.1 (461 \text{Hz})$
- Active flow control analysis used a 5% freestream forcing amplitude at $w_r = 50 \ (434Hz)$. First Mode Gain Regression

AFRL

Facilities and Geometry

- Testing performed at AFRL's Low Speed Wind Tunnel facility (LSWT)
- Straight test section referred to as the Developmental Wind Tunnel
 - Airspeed range of 4.5 65 m/s, 30 cm. square by 60 cm. test section
 - Turbulence intensity $\sim 0.6\%$
- Eppler 387 Airfoil
 - 16.5 cm chord
 - Max thickness 1.5 cm (~0.6 in.)
 - Using Acoustic speakers as driver for synthetic Jets

Test Article

- Coefficient of pressure measurements taken from selection of evenly spaced ports: x/c = 5.15% (18 SS, 6 PS)
- Actuators consisted of 14 speakers, 28 orifices of 1mm diameter
 - Spaced y/b = 0.0308 covering 86% of the suction surface

Actuator Characterization

- Actuators characterized using a hotwire in quiescent flow
- Lookup table created for jet velocities of 0.5, 1.0, and 1.5 m/s
- Actuators give effective performance from 300Hz 900Hz
- Testing primarily occurred at 1.5m/s ($V_r \cong 15\%$), found to be most effective

$$C_{\mu} = J/q_{ref}A_{ref}, \ J = \frac{\rho_{ref}}{T/2}\int_{T_1}^{T_2}\int_{A_{jet}}u_j^2(t)dt$$

Coefficient of Pressure Measurements

• Measurements taken using Allsensor transducers and a selector valve

$$C_p = 1 - \left(\frac{P_{T,in} - p_{s,local}}{P_{T,in} - p_{s,in}}\right)$$

• Actuators have clear effect on separation bubble length

Drag Measurements

• Coefficient of drag estimated using the method of Jones (Goett 1939)

$$C_{d} = \frac{2}{C_{x}} \int^{w} \frac{\sqrt{P_{T,w} - p_{w}}}{\sqrt{P_{T,in} - p_{in}}} \left(1 - \frac{\sqrt{P_{T,w} - p_{in}}}{\sqrt{P_{T,in} - p_{in}}} \right) dz$$

• Measurements performed using a stationary upstream probe and 2 axis traversable downstream probe

Lift To Drag Ratio

• Coefficient of lift estimated by integration of coefficient of pressure

Case	c_{I}	c_d	c_l/c_d	C _m
FSTI = 0%	0.433	0.0191	22.7	-0.108
FSTI = 1%	0.399	0.0157	25.4	-0.0892
FSTI = 0%, AFC	0.371	0.0137	27.2 (+19.8%)	-0.0778
FSTI = 1%, AFC	0.361	0.0136	26.5 (+4.3%)	-0.0741

LES AFC Study Results

Experimental Results

Case	c_l	c_d	c_l/c_d
Baseline	0.3844	0.01606	23.36
434Hz	0.3414	0.01548	22.05 (-7.90%)
600Hz	0.3403	0.01400	24.30 (+1.52%)

Conclusions

- Used acoustic synthetic jets to verify a frequency dependence predicted by resolvent analysis
- Hotwire used to construct lookup table and ensure equal amplitude (momentum coefficient) used when sweeping frequency
- Actuators caused peak loss to increase, but lowers overall drag
- Largest drag reduction occurred at 600Hz
- Frequency dependence is evident, but a smooth curve as described by the resolvent analysis did not emerge

Future Work:

- Passive resonators designed at ideal frequencies
- Flow visualization of synthetic jet model
- Potential application in linear cascade on high zweifel airfoils.